Kinetics and Mechanism of the Reactions of Organochromium Complexes with Mercury(II) and Methylmercury(II) Ions¹

John P. Leslie, II, and James H. Espenson*

Contribution from the Ames Laboratory and the Department of Chemistry, Iowa State University, Ames, Iowa 50011. Received October 20, 1975

Abstract: Kinetics studies have been carried out on a family of organochromium complexes of the general formula $(H_2O)_5$ CrR²⁺ for the groups R = CH₃, C₂H₅, *n*-C₃H₇, CH₂C(CH₃)₃, *i*-C₃H₇, CH₂Cl, CH₂Br, CF₃, and *p*-CH₂C₆H₄Z (Z = H, CH₃, CN, CF₃, and Br). These cations react with Hg²⁺ forming RHg⁺ and Cr(H₂O)₆³⁺, and with CH₃Hg⁺ forming CH₃HgR and Cr(H₂O)₆³⁺. Reaction rates were evaluated as a function of concentration in water at 25.0°, and in a few instances in other solvents and at other temperatures. These reactions are believed to follow a bimolecular, electrophilic substitution mechanism.

Electrophilic dealkylation of organocobalt compounds such as cobaloximes² and cobalamins has in recent years received extensive study,³⁻¹⁴ from the point of view of both kinetics and stereochemistry. In contrast to this we are aware of no systematic investigation of the mechanism of dealkylation of organochromium ions by Hg(II), despite this reaction being used by Anet and Leblanc in their original characterization of the benzylchromium ion.¹⁵ Some further results were obtained by Dodd and Johnson, who observed that the monochloromethyl- and monobromomethylchromium ions, $[(H_2O)_5CrCH_2X]^{2+}$, react with mercuric nitrate to produce the corresponding organomercury cation and hexaaquochromium(III) ion.¹⁶ Johnson and co-workers also carried out a detailed kinetic study of the electrophilic cleavage reactions of 2-, 3-, and 4-pyridinomethylchromium ions with hydrated ions and halo complexes of Hg(II) and Tl(III).¹⁷

In the present work we report the results of a study of the chemical kinetics of the chromium-carbon bond cleavage reactions of a family of $(H_2O)_5CrR^{2+}$ cations, in which the group R is a primary or secondary alkyl, a haloalkyl, or a benzyl substituent. The complexes studied react with mercuric ion and with a monoalkylmercuric ion such as CH_3Hg^+ as shown in reactions 1 and 2.

$$(H_2O)_5CrR^{2+} + Hg^{2+}_{aq} = RHg^{+}_{aq} + Cr(H_2O)_6^{3+}$$
 (1)

$$(H_2O)_5CrR^{2+} + CH_3Hg^{+}_{aq}$$

= RHgCH₃ + Cr(H₂O)₆³⁺ (2)

A chief point of interest is the rate of the electrophilic reaction, and the kinetic manifestations of steric and electronic changes in the group R. A reaction which is closely related to reaction 1 is the analogous reaction with bromine and iodine:¹⁸

$$(H_2O)_5CrR^{2+} + X_{2aq} \rightarrow Cr(H_2O)_6^{3+} + RX + X^-$$
 (3)

for which the data suggest an SE2 mechanism, apparently free of the complications which attend the reaction of organocobalt complexes and halogens.^{9,19-22} The comparison of reactions 1 and 3 should afford further mechanistic insight.

Results

Characterizations. Many of the organochromium complexes used in this work are previously reported compounds, which we characterized chiefly by their electronic spectra as summarized in the Experimental Section. The two complexes containing the secondary alkyl groups $i-C_3H_7$ and $sec-C_4H_9$ are original to this work. Their compositions were assumed from the alkyl hydroperoxides used in their preparations. For the isopropyl complex, this was confirmed by the positive NMR identification of i-C₃H₇HgCl resulting from reaction of CrCH(CH₃)₂²⁺ with mercuric ion. Furthermore, the kinetic data for this complex were quite different from those of the primary alkyls. The *t*-C₄H₉ complex was not completely characterized.²³

NMR determinations were used to confirm the organomercury products (RHgCl or RHgR') of seven of the reactions of CrR^{2+} with Hg^{2+} , CH_3Hg^+ , or $C_6H_5Hg^+$. The NMR spectrum²⁴ of C_2H_5HgCl (from $CrC_2H_5^{2+} + Hg^{2+}$) matched that reported,²⁵ and that of neopentylmercuric chloride (from $CrCH_2C(CH_3)_3^{2+} + Hg^{2+}$) was identical with that of an authentic sample.26 The identity of isopropylmercuric chloride (from $Cr \cdot i \cdot C_3 H_7^{2+} + Hg^{2+}$) was deduced from the splitting pattern ((CD₃)₂CO) δ 1.50 (d, 6.4, CH₃) and 2.25-2.85 (m, 1, CH₂). Benzylmercuric chloride (from $CrCH_2C_6H_5^{2+}$ + Hg²⁺) was identified from the CH₂ chemical shift and coupling constant ((CDCl₃) δ 3.23 (s, J_{Hg-H} = 253 Hz)) in exact agreement with an authentic sample,²⁷ and the NMR spectrum of chloromethylmercuric chloride agreed with that in the literature.¹⁶ Benzylmethylmercury (from $CrCH_2C_6H_5^{2+}$ + CH₃Hg⁺) was confirmed from its NMR spectrum ((CDCl₃) δ 0.38 (s, H3), 2.30 (s, H2)) compared to reported^{27,28} chemical shifts δ 0.34 and 2.28. Finally, the identity of $C_6H_5CH_2HgC_6H_5$ (from $CrCH_2C_6H_5^{2+} + C_6H_5Hg^+$) was confirmed by the CH₂ chemical shift (CDCl₃) δ 2.45 compared to the reported $\delta 2.57.^{27}$ On the basis of these results, which include alkyl, haloalkyl, and aralkyl derivatives, it was assumed that the remaining reactions occurred analogously.29

The formation of $Cr(H_2O)_6^{3+}$ in both reactions 1 and 2 was confirmed by its electronic spectrum: λ 574 nm (ϵ 13.3), 408 (15.8). For the complex $Cr-n-C_3H_7^{2+}$ cation, the stoichiometry of each of the reactions was established quantitatively using a spectrophotometric method in 50% aqueous methanol (to avoid precipitation of the organomercurial at these higher concentrations; we regard the change of solvent as immaterial insofar as the stoichiometry is concerned). A fixed quantity of $Cr-n-C_3H_7^{2+}$ was added to each of several volumetric flasks followed by varying amounts of CH₃Hg⁺ or Hg²⁺. Immediately upon addition of the reagents and dilution to volume the absorbance at 393 nm, a maximum for $Cr - n - C_3 H_7^{2+}$ (ϵ 380). was measured. The plots of absorbance vs. the mole ratio of mercury reactant to n-propylchromium are shown in Figure 1. In the case of CH_3Hg^+ the "break" occurs at a ratio 0.91 \pm 0.03, supporting the 1:1 stoichiometry of reaction 2. The reaction of Hg²⁺ with Cr-*n*-C₃H₇²⁺ shows a break at 0.48 \pm 0.04, consistent with the $2CrR^{2+}$:1Hg²⁺ stoichiometry expected from the sum of reactions 1 and 2.

Kinetic Determinations for Hg^{2+} Reactions. The kinetics of the reaction of a given organochromium cation with Hg^{2+} as

Table I. Summary of Kinetic Data^{*a*} for Reactions of $(H_2O)_5CrR^{2+}$ with Hg^{2+}

R	Range of 10 ³ [Hg ²⁺]/M	Range of [H ⁺]	$k_{Hg}/M^{-1} s^{-1}$	
-CH3	0.053	0.250	$(1.0 \pm 0.1) \times 10^7$	
$-C_2H_5$	0.59-0.99	0.100-0.250	$(1.40 \pm 0.06) \times 10^{5}$	
$-n-C_3H_7$	0.20-1.98	0.100-0.250	$(3.50 \pm 0.17) \times 10^4$	
$-CH_2C(CH_3)_3$	1.32-5.94	0.250	$(4.9 \pm 0.2) \times 10^2$	
$-i-C_3H_7$	0.95-6.32	0.250	1.56 ± 0.01	
-CH ₂ Cl	21.2-47.6	0.135-0.250	$(5.90 \pm 0.15) \times 10^{-1}$	
-CH ₂ Br	9.5-38.1	0.250-0.500	$(4.68 \pm 0.26) \times 10^{-1}$	
-CF ₃	370.	0.250	<10 ⁻⁶ b	
$-CH_2C_6H_5$	0.603-1.19	0.100-0.250	$(4.87 \pm 0.22) \times 10^4$	
-p-CH ₂ C ₆ H ₄ CH ₃	0.264-0.594	0.250	$(5.22 \pm 0.27) \times 10^4$	
-p-CH ₂ C ₆ H ₄ Br	0.527-1.05	0.250	$(2.98 \pm 0.07) \times 10^4$	
-p-CH ₂ C ₆ H ₄ CF ₃	0.502-1.06	0.250	$(2.10 \pm 0.06) \times 10^4$	
-p-CH ₂ C ₆ H ₄ CN	0.304-0.660	0.100-0.250	$(1.64 \pm 0.08) \times 10^4$	
-2-pyridinomethyl	0.2-0.4	0.09-0.500	$(3.0 \pm 0.2) \times 10^{1}$ c	
-3-pyridinomethyl	0.02-0.04	0.500	$(2.05 \pm 0.3) \times 10^{2}$ c	
-4-pyridinomethyl	0.02-0.04	0.500	$(5.0 \pm 0.3) \times 10^{2}$ c	

^{*a*} At 25.0°, $\mu = 0.50$ M (LiClO₄). ^{*b*} $\mu = 1.7$ M. ^{*c*} From ref 17b.

Figure 1. Spectrophotometric data obtained by the addition of varying quantities of Hg^{2+} (open circles) or CH_3Hg^+ (filled circles) to a given quantity of Cr-n- $C_3H_7^{2+}$.

Figure 2. Plots of the pseudo-first-order rate constants vs. $[Hg^{2+}]$ for the reactions of Hg^{2+} with Cr-n- $C_3H_7^{2+}$ (filled circles) and $CrCH_2C_6H_5^{2+}$ (open circles). Inset: reaction of Hg^{2+} with Cr-i- $C_3H_7^{2+}$ showing nonzero intercept corresponding to acidolysis.

in eq 1 can be studied with virtually no interference from the simultaneous or subsequent occurrence of the secondary reaction of CrR^{2+} with HgR⁺, eq 2. This is so for two reasons:

the rate constant for a given organochromium cation with Hg^{2+} is at least 10^2 times larger than that with HgR^+ , and the reaction rate determinations were made using excess Hg^{2+} , usually greater than or equal to a tenfold excess, thus rendering the second-stage reaction insignificant.

The pseudo-first-order rate plots constituted good straight lines to at least 80% completion. The values of k_{obsd} computed from the slopes of such plots show a linear dependence upon [Hg²⁺] as depicted in Figure 2 for the complexes Cr-*n*-C₃H₇²⁺ and CrCH₂C₆H₅²⁺. These data are evidently in accord with the rate expression

$$-d[CrR^{2+}]/dt = k_{Hg}[CrR^{2+}][Hg^{2+}]$$
(4)

Table I summarizes the kinetic data for reaction 1, the value of k_{Hg} being determined from the slope of k_{obsd} vs. $[Hg^{2+}]$ by the method of least squares. The rate constant for each reaction was determined at 0.250 M H⁺ with lithium perchlorate used to maintain an ionic strength of 0.50 M. In addition, for several of the complexes kinetic data were obtained at varying [H⁺], 0.1–0.5 M; the rate constants proved independent of [H⁺] in this range. The lack of appreciable reactivity of CrCF₃²⁺ is noteworthy.

The neopentyl complex underwent acidolysis rather more rapidly than the other complexes, so that its isolation from the preparative solution—the reaction of Cr^{2+} and $(CH_3)_3$ - $CH_2C(CH_3)_2OOH$ —by ion exchange chromatography was not successful. In this case, therefore, the kinetics were conducted utilizing the unpurified reaction solution. The correctness of this method was to some extent verified by comparing the kinetic data for the reaction of $Cr \cdot n \cdot C_3 H_7^{2+}$ obtained for the purified complex $(3.5 \times 10^4 \text{ M}^{-1} \text{ s}^{-1})$ with that obtained from an unpurified preparative sample (3.4×10^4) .

The primary alkyl complexes do not react with oxygen within the time they undergo decomposition by acidolysis, and their reactions with Hg²⁺ were also independent of whether oxygen was excluded from the run. The benzyl derivatives, which slowly react with oxygen,³⁰ were studied under inert atmosphere conditions. The complex Cr-*i*-C₃H₇²⁺ proved to undergo acidolysis (or other decomposition reactions) more rapidly in the presence of oxygen than in its absence: 3×10^{-3} s⁻¹ compared to ~ 3×10^{-4} s⁻¹ (25 °, 0.250 M H⁺, μ = 0.50). For this complex, whose reaction with Hg²⁺ occurs relatively slowly, the plot of k_{obsd} vs. [Hg²⁺] had a nonzero intercept ((4 ± 1) × 10⁻⁴ s⁻¹), which we interpret to represent the concurrent, mercury-independent acidolysis.

Kinetic Determinations for CH₃Hg⁺ Reactions. The reaction

Table II. Summary of Kinetic Data^a for Reactions of (H₂O)₅CrR²⁺ with CH₃Hg⁺

R	Range of 10 ³ [CH ₃ Hg ⁺]/M	Range of [H ⁺]/M	$k_{\rm CH_{3}Hg}/M^{-1} {\rm s}^{-1}$	
-CH ₃	0.424-1.06	0.250 ^b	$(1.0 \pm 0.02) \times 10^{4 b}$	
-C2H,	1.06-2.12	0.100-0.250	$(1.99 \pm 0.04) \times 10^{2}$	
$-n \cdot C_3 H_7$	0.976-4.10	0.100-0.250	$(1.21 \pm 0.08) \times 10^2$	
$-CH_2C(CH_3)_3$	1.78-6.24	0.100-0.400	5.8 ± 0.6^{c}	
-CH ₂ Cl	14-19	0.25	$\sim 6 \times 10^{-4} d$	
-CH ₂ C ₆ H ₅	0.462-9.90	0.100-0.500	$(9.8 \pm 0.1) \times 10^{1}$	
-p-CH ₂ C ₆ H ₄ CH ₃	0.422-4.92	0.250	$(1.21 \pm 0.05) \times 10^{2}$	
-p-CH ₂ C ₆ H ₄ Br	1.03	0.250	$(5.68 \pm 0.18) \times 10^{4}$	
-p-CH ₂ C ₆ H ₄ CF ₃	1.03	0.250	$(3.47 \pm 0.08) \times 10^{10}$	
-p-CH ₂ C ₆ H ₄ CN	0.80-1.72	0.250	$(2.39 \pm 0.04) \times 10^{10}$	

^a At 25.0°, $\mu = 0.50$ M (LiClO₄). ^b Varies with [H⁺], see text. ^c Evaluated as described in the text. ^d Room temperature, $k \pm 20\%$.

Figure 3. Plots of the pseudo-first-order rate constants vs. $[CH_3Hg^+]$ for the reactions of CH_3Hg^+ with Cr-n- $C_3H_7^{2+}$ (open circles, left ordinate scale) and with $CrCH_2C(CH_3)_3^{2+}$ (filled circles, right ordinate scale).

rates were determined by conventional or stopped-flow spectrophotometry, as appropriate to the rate of a given run. Pseudo-first-order plots were linear, and values of k_{obsd} thereby obtained show a linear variation with [CH₃Hg⁺] as depicted in Figure 3 for two typical complexes. All of these plots went through the origin, consistent with the rate law in eq 5. Values of the rate constants are summarized in Table II.

$$-d[CrR^{2+}]/dt = k_{CH_{3}Hg}[CrR^{2+}][CH_{3}Hg^{+}]$$
(5)

An exception to this general pattern is found for R = neopentyl, in which case the acidolysis provides an alternative, concurrent pathway for disappearance of the organochromium cation at a rate independent of $[CH_3Hg^+]$. The intercept of k_{obsd} vs. $[CH_3Hg^+]$ for the neopentyl complex is $(1.1 \pm 0.2) \times 10^{-2} \text{ s}^{-1} (25.0^{\circ}, [H^+] = 0.250 \text{ M}, \mu = 0.500 \text{ M})$ in only fair agreement with a rate constant of $(0.4 \pm 0.1) \times 10^{-2} \text{ s}^{-1}$ for the acidolysis process under the same conditions. (The latter reaction is independent of $[H^+]$ and of the presence of oxygen.) The kinetic data for the neopentyl complex were obtained on unpurified preparative solutions owing to its rapid acidolysis. The procedure was checked using the reaction of $\text{Cr-}n\text{-}\text{C}_3\text{H}_7^{2+}$ with CH₃Hg⁺ which in one run had $k_{\text{CH}_3\text{Hg}} = 1.0 \times 10^2 \text{ M}^{-1} \text{ s}^{-1}$ compared to the average rate constant $(1.21 \pm 0.08) \times 10^2 \text{ M}^{-1} \text{ s}^{-1}$ using the purified complex.

Among all the reactions studied, only that of $CrCH_3^{2+}$ with CH_3Hg^+ shows a variation with $[H^+]$, increasing as $[H^+]$ decreases; values of $10^{-4}k_{CH_3Hg}$ at different $[H^+]$ at $\mu = 0.50$ M and 25.0°, are as follows: 1.06 ± 0.02 at 0.40 M, 1.14 ± 0.02 at 0.250 M, 1.58 ± 0.09 at 0.100 M and 3.16 ± 0.26 at 0.020 M. A treatment of the form $k = a + b[H^+]^{-1}$ yields the parameters $a = 9 \times 10^3$ M⁻¹ s⁻¹ and $b = 5.8 \times 10^2$ s⁻¹.

Variations of Anion, Solvent, and Electrophile. A cursory study was done to learn the magnitude of the rate effect caused by variation of certain other parameters. The rate studies employed CH₃HgOAc for matters of practical convenience, but the rate constant for the reaction of CH₃HgClO₄ with CrCH₂C₆H₅²⁺ is identical (96 M⁻¹ s⁻¹ compared to 98 ± 1 for the latter): The predominant species of methylmercuric ion in solution is undoubtedly CH₃HgOH₂⁺, and the choice of weakly-coordinating anion is immaterial. The solution of CH₃HgClO₄ may possibly contain small traces of Ag⁺ from the preparative procedures, but addition of 10^{-4} M Ag⁺, a level far in excess of that which might be present, caused no detectable variation in rate constant toward CrCH₃²⁺: 1.1×10^4 M⁻¹ s⁻¹, regardless of the addition of Ag⁺.

The kinetic studies employed strictly aqueous solutions, with one determination of the rate constant for the reaction of CH₃Hg⁺ with CrCH₂C₆H₅²⁺ carried out in 2:1 v/v THF-H₂O at 25.0° and 0.50 M ionic strength. The latter reaction had $k_{\text{HgCH}_3} = 29 \text{ M}^{-1} \text{ s}^{-1}$ compared to 98 ± 1 in water.

In the course of preliminary studies of the CH₃Hg⁺ reactions we asked whether the nature of the organomercurial had a marked rate effect. Three kinetic experiments supported the lack of a pronounced effect: (1) with CrCH₂C₆H₅²⁺ in 2:1 v/v THF-H₂O at 25.0°, $\mu = 0.5$ M, C₆H₅CH₂HgClO₄ and CH₃Hg⁺ gave $k_{RHg} = 29$ and 30 M⁻¹ s⁻¹, respectively; (2) with CrCH₂C₆H₅²⁺ in water at 25.0°, $\mu = 0.1$ M, C₆H₅HgOAc and CH₃HgOAc gave $k_{RHg} = 40$ and 65 M⁻¹ s⁻¹, respectively; (3) with CrCH₃²⁺ in water at 25.0° and $\mu = 0.50$ M, C₆H₅HgOAc and CH₃HgOAc gave $k_{RHg} = 1.6 \times 10^4$ and 1.1×10^4 M⁻¹ s⁻¹, respectively.

The second experiment also provides a limited measure of ionic strength effects: k_{CH_3Hg} is 65 at $\mu = 0.1$ M and 98 at $\mu = 0.5$ M (25.0°, aqueous solution).

Effects of Temperature and Electronic Substituents. For three of the reactions investigated, rate constants were evaluated at different temperatures. These data and the corresponding activation parameters are given in Table III.

Both $k_{\rm Hg}$ and $k_{\rm CH_3Hg}$ show a mild variation with the substituent in the series of para substituted benzylchromium cations. The correlation we make of these data takes the form of a linear-free-energy relation according to the Hammett equation. Figure 4 depicts the plots of log k vs. the substituent parameter σ . Values³¹ of the reaction constant are $k_{\rm Hg}$, $\rho = -0.62 \pm 0.05$; $k_{\rm CH_3Hg}$, $\rho = -0.85 \pm 0.05$.

Interpretation and Discussion

The experimental observations bearing on the reaction can be succinctly summarized as follows: (1) the respective mercury products of reactions 1 and 2 are RHg⁺ and RHgCH₃,²⁹ (2) the rates are first order in [CrR²⁺] and first order in [Hg²⁺] or [CH₃Hg⁺]; (3) the rates are independent of [H⁺], with the sole exception of CH₃Hg⁺ + CrCH₃²⁺; (4) for a given CrR²⁺ complex, $k_{Hg} \ge 10^2 k_{CH_3Hg}$, (5) the reaction rates of various organomercurial cations with a given CrR²⁺ complex

Table III. Temperature Effects and Activation Parameters

Reaction	$Cr-n-C_3H_7^{2+} + Hg^{2+}$	$Cr-n-C_3H_7^{2+} + CH_3Hg^+$	$CrCH_2Cl^{2+} + Hg^{2+}$
$k/M^{-1} s^{-1} (T/^{\circ}C)$	$(3.08 \pm 0.08) \times 10^4 (17.7^\circ)$	$(0.78 \pm 0.01) \times 10^2 (15.1^\circ)$	$0.356 \pm 0.009 (17.3^{\circ})$
, , ,	$(3.50 \pm 0.17) \times 10^4 (25.0^{\circ})$	$(1.21 \pm 0.08) \times 10^{2} (25.0^{\circ})$	0.590 ± 0.015 (25.0°)
	$(4.08 \pm 0.20) \times 10^4 (29.9^{\circ})$	$(1.73 \pm 0.05) \times 10^2 (35.1^{\circ})$	0.730 ± 0.014 (29.4°)
		$(2.35 \pm 0.05) \times 10^{2} (41.1^{\circ})$	$1.02 \pm 0.02 (36.0^{\circ})$
$\Delta H^{\pm}/\text{kJ} \text{ mol}^{-1}$	13.8 ± 3.3	28.6 ± 2.4	39.8 ± 0.8
$\Delta S^{\pm}/J \text{ mol}^{-1} \text{ K}^{-1}$	-111 ± 11	-109 ± 8	-116 ± 3

Figure 4. Plots of k_{Hg} (open circles) and k_{CH_3Hg} (filled circles) on a log scale vs. the Hammett substituent parameters σ_p .

are about the same; (6) Hg²⁺, CH₃Hg⁺, and Br₂ show parallel changes in reactivity toward variation of R in the series of CrR²⁺ complexes; (7) the rate is sharply lowered by addition of electronegative substituents to the α carbon atom, the most dramatic example being the nonreactive CrCF₃²⁺, and is mildly decreased by electron withdrawing substituents in the benzylchromium complexes; (8) the rate decreases with steric bulk of the alkyl substituent, particularly so for the secondary isopropyl complex.

The observations suggest an electrophilic reaction, with formal carbanion transfer from chromium to mercury. The small negative reaction constants resulting from the Hammett correlation suggest that little additional "free carbanion character" develops in the transition state, compared to the ground state. The first-order rate dependence upon [electrophile] eliminates a unimolecular SE1 mechanism for which the heterolysis of CrR²⁺ to form Cr³⁺ and RR⁻ would be the rate-limiting step. Even in the few reactions with a nonzero intercept in a plot of k_{obsd} vs. [Hg²⁺] or [CH₃Hg⁺], it was possible to demonstrate that this corresponds to the competing acidolysis of CrR²⁺ and not to a concurrent SE1 electrophilic reaction. The kinetic data support an SE2 (open) mechanism, as this term is defined by Abraham;³³ that is, there is in the transition state no bridging between the incoming mercury electrophile and a water molecule coordinated to the pentaaquo(organo)chromium complex.

The reactivity of Hg^{2+}_{aq} compared to $CH_3HgOH_2^+$ is markedly higher, reflecting the greater electrophilic character of the former. Yet the change here is *far* less marked than in the analogous reactions of alkylcobalt complexes where RHg⁺ is virtually unreactive despite facile reaction of Hg^{2+} .^{5,8} Perhaps this difference is not fundamental: the overall reactivity of the RCr²⁺ complexes greatly exceeds that of the RCo-(chelate) derivatives, for one thing, in addition to which the scale of reactivity is compressed for the more rapidly reacting chromium complexes. A second point of note is the lack of rate sensitivity to a change from CH_3Hg^+ to PhHg⁺ or PhCH₂Hg⁺ which suggests the essentially constant electrophilicity of these three.

Table IV presents the relative rate constants for reactions of aliphatic organochromium cations with the electrophiles Br₂, Hg^{2+} , and CH_3Hg^+ . These data indicate the close similarity of these three reactions among themselves, and the rougher agreement between these three and two others, namely, $RCo(dmgH)_2H_2O + Hg^{2+}_{aq}$ and $RSn(CH_2C(CH_3)_3)_3 + Br_2$. The latter are two electrophilic reactions for which inversion of configuration has been established.^{14a,34} In contrast to these. reactions where the steric course is known to be retention of configuration show a somewhat different pattern of reactivity. We therefore offer the *tentative* suggestion that reactions 1 and 2 proceed with inversion of configuration; the same suggestion was made previously for reaction of Cr²⁺ with Br₂.^{18a} Examined in more detail, reaction of Hg²⁺ with CrR²⁺ shows more pronounced rate effects with steric bulk of R than do either of the reactions $CrR^{2+} + CH_3Hg^+$ or $CrR^{2+} + Br_2$. The latter is the least sterically dependent of the three. It seems reasonable that the rates are more subject to steric influence the greater the extent of solvation of the electrophile, which decreases in the order $Hg^{2+} > CH_3Hg^+ > Br_2$.

The values of ΔS^{\pm} for the three reactions studied at more than a single temperature were large, negative numbers, all ca. -110 J mol⁻¹ K⁻¹. The large rate variations for the different reactions arise entirely from differences in ΔH^{\pm} .

Experimental Section

Preparation of Alkyl Hydroperoxides. Of the compounds with the general formula $RC(CH_3)_2OOH$, only $R = CH_3$ is commercially available; the compounds with $R = C_2H_5$, $n-C_3H_7$, $i-C_3H_7$, $(CH_3)_3CCH_2$, sec-C₄H₉, and t-C₄H₉ were prepared from the appropriate alcohol and hydrogen peroxide according to the general procedure of Milas and Sugenor³⁵ with but slight modification. A typical procedure³⁶ is the following preparation of 2,4,4-trimethylpentyl 2-hydroperoxide:water (3.1 cm³) and concentrated sulfuric acid (3.5 cm³, 0.06 mol) were added to a 100-cm³ round-bottom flask and cooled to 0°. 2,4,4-Trimethyl-2-pentanol (10 cm³, 0.06 mol) and hydrogen peroxide (ca. 6 cm³ of a 50% solution, 0.08 mol) were added to the flask simultaneously and dropwise over a period of 45 min with vigorous stirring.³⁷ This mixture was left to react at 0° with stirring for ca. 6 h, after which the aqueous phase, separated by centrifugation, was discarded. The organic layer was washed twice with water, and proved by peroxide analysis (see below) to be 5.1 M (CH₃)₃-CCH₂C(CH₃)₂OOH, compared to 6.2 M for the pure compound based on an estimated density of 0.9 g cm⁻³. This material was used without further purification for the synthesis of the neopentylchromium(III) cation.

Proton NMR spectra of the hydroperoxides in CDCl₃ confirmed the assigned structures, but in every case were so close to that of the parent alcohol that they did not prove the absence of the latter materials, which is the most likely contaminant. Since these alcohols do not react with Cr^{2+} under the conditions employed, and since the ultimate RCr^{2+} complexes are purified chromatographically, removal from the hydroperoxide of the final traces of alcohol was deemed unnecessary.

The alcohols for the above preparations were the commercial reagent-grade compounds, except for R = neopentyl in which case the compound was prepared by the reaction of 4,4-dimethyl-2-pentanone (50 cm³, 0.35 mol) and methyl magnesium bromide.

The alkyl hydroperoxides were determined by a modification of the method of Wagner et al.³⁸ wherein 1-3 mmol of the compound is

		Relative rates at 25°					
Reaction	Stereochemistry	-CH3	-C ₂ H ₅	- <i>n</i> -C ₃ H ₇	-CH ₂ C(CH ₃) ₃	-CH(CH ₃) ₂	Ref
$CrR^{2+} + Hg^{2+}_{ag}$	-	71	1.00	0.25	3.5×10^{-3}	1.1×10^{-5}	а
$CrR^{2+} + CH_3Hg^+_{ag}$	_	50	1.00	0.61	2.9×10^{-2}	-	а
$CrR^{2+} + Br_{2ag}$	_	4.3	1.00	1.3	2.0×10^{-2}	-	b
$RCo(dmgH)_{2}H_{2}O + Hg^{2+}_{aq}$	Inversion	530	1.00	0.74	7.4×10^{-2}	$<5 \times 10^{-6}$	С
$RSn(CH_2C(CH_3)_3)_3 + Br_2$	Inversion	6.9	1.00	0.28	4.0×10^{-3}	5.2×10^{-2}	d
$RHgBr + HgBr_2$	Retention	2.4	1.00	_	0.78	_	е
$R_2Hg + HCl$	Retention	0.16	1.00	0.62		0.68	f
"ŠNŽ"	Inversion	33	1.00	0.04	10-6	3×10^{-3}	g

^a This work. ^b Reference 18a. ^c References 5, 14a. ^d Data from ref 9, rates quoted relative to $C_2H_5Sn(CH_2C(CH_3)_3)_3$ for which k = 1.15 $M^{-1}s^{-1}$ at 45° in 0.366 M NaBr in methanol. ^e Data from E. D. Hughes and H. C. Volger, *J. Chem. Soc.*, 2359 (1961), and E. D. Hughes, C. K. Ingold, F. G. Thorpe, and H. C. Volger, *ibid.*, 1133 (1961), rates quoted relative to $C_2H_5HgBr + HgBr_2$ for which $k = 5.4 \times 10^{-5} M^{-1} s^{-1}$ in ethanol at 100°. ^f Data from R. E. Dessy, G. F. Reynolds, and J.-Y. Kim, *J. Am. Chem. Soc.*, 81, 2683 (1959), rates quoted in 10:1 Me₂SO/dioxane at 50° relative to $Hg(C_2H_5)_2$ for which $k = 8.2 \times 10^{-4} M^{-1} s^{-1}$. ^g The data for "typical" SN2 substitution from A. Streitweiser, Jr., "Solvolytic Displacement Reactions", McGraw-Hill, New York, N.Y., 1962, p 13.

added to isopropyl alcohol (40 cm^3) and acetic acid (2 cm^3) . The solution is heated to boiling, sodium iodide (2 g) added, and the mixture refluxed for 5 min. After cooling to room temperature, the solution is titrated with aqueous sodium thiosulfate to the disappearance of the iodine coloration.

Preparation of Organochromium Complexes. The general reaction used to prepare the alkyl complexes, $CrC_nH_{2n+1}^{2+}$, is given in eq 6, and the general reaction used for benzyl and haloalkyl complexes in eq 7.

$$C_nH_{2n+1}C(CH_3)_2OOH + 2Cr^{2+}$$

$$= Cr^{3+} + CrC_nH_{2n+1}^{2+} + (CH_3)_2CO \quad (6)$$

$$RBr + 2Cr^{2+} = CrBr^{2+} + CrR^{2+}$$
(7)

Reaction 6 was first used by Kochi³⁹ for the preparation of $CrCH_2C_6H_5^{2+}$, and later by others⁴⁰ for $CrCH_3^{2+}$. Espenson and Williams^{18a} have described the preparation of several other primary alkyl chromium cations by the same reaction, but the conditions were not optimally adjusted. The following preparations yielded⁴¹ CrR²⁺ complexes, isolated and purified by cation exchange chromatography. In addition, in this work two secondary and one tertiary alkyl complex were prepared for the first time.

The general procedure is to carry out the reaction in ca. 50 cm³ of thoroughly deoxygenated aqueous 0.01 M perchloric acid, reacting 0.6-1 mmol of the hydroperoxide with ca. 3 mmol of $Cr(ClO_4)_2$. The reaction is virtually complete upon mixing, and the excess Cr²⁺ was oxidized by bubbling the solution with oxygen for 10 min. The reaction solution was then passed through a 15×1 cm column of Dowex 50W-X8, 100-200 mesh, cation exchange resin in the lithium ion form that was chilled by the circulation of ice water through a condensertype jacket. The column was washed with 50-200 cm³ of cold water, and the pale yellow or orange organochromium complex eluted with 0.5 F lithium perchlorate. The ion exchange separation was often carried out with a slight positive pressure of nitrogen applied to the column to speed the passage of solution. The above procedure was successful for $R = CH_3$, C_2H_5 , $n-C_3H_7$, $i-C_3H_7$, and sec-C₄H₉, which were typically obtained as ca. 50 cm³ of 3×10^{-3} M CrR²⁺, collected, and stored at 0° to minimize acidolysis. (The isopropyl and sec-butyl derivatives were, in addition, mildly oxygen sensitive, and were stored and utilized under nitrogen, although oxygen was briefly introduced to oxidize the excess Cr²⁺ prior to separation.) The acidolysis of the neopentylchromium cation proceeds relatively rapidly (contrary to a previous report;^{18a} the half-life towards acidolysis is roughly 15 min at 0° in 0.5 F LiClO₄, and may be accelerated by the ion exchange resin). Its reactions were studied using the reaction solution itself, without benefit of ion exchange separation, under the assumption that Cr(III) and organic by-products are innocuous in the reactions studied. This point was verified independently by the reproducibility of kinetic data for the n-propylchromium cation with and without the separation and purification step.

Reaction 7 for the preparation of haloalkyl and benzyl complexes has been widely utilized; 15-18,30,39,42 the precise procedures used for the preparation and separations are given elsewhere.¹

Table V. Uv-Visible Spectra of Organochromium Complexes $(H_2O)_5 Cr R^{2+}$ in Aqueous Solution

R	λ_{max}/nm (
$-CH_3^a$	550 (12.0)	392 (246)	258 (2400)
$-C_2H_5$	560 (8.5)	394 (390)	275 (2400)
$-n-C_{3}H_{7}$	550 (8.3)	393 (380)	276 (2650)
$-CH_2C(CH_3)_3$		405 (ca. 200)	283
$-i-C_3H_7$	557 (10.0)	399 (366)	290 (1800)
-sec-C ₄ H ₉		400 (370)	283 (1775)
$-t-C_4H_9$		[.] 407	310
-CH ₂ Cl	517 (23.7)	393 (225)	260 (3560)
-CH ₂ Br ^b	520 (28.9)	397 (255)	266 (3280)
-CF ₃	490 (43.2)	380 (77.6)	220 (5500)
-CH ₂ C ₆ H ₃ ^c	355 (2200)	297 (6970)	274 (7670)

^a From J. S. Shveima and J. H. Espenson, J. Am. Chem. Soc., 95, 4468 (1973). ^b Reference 18a. ^c Reference 43.

The uv-visible absorption spectrum of each organochromium complex was obtained on one or more samples immediately following elution from the ion exchange resin.³⁶ The molar absorptivities (see Table V) were computed on the basis of a determination of total chromium as chromate at λ 372 nm (ϵ 4.83 × 10³ M⁻¹ cm⁻¹),⁴³ and although we regard them as values accurate to within 5%, the values are really lower limits in that the most likely systematic error is a lower absorbance caused by any partial acidolysis or imperfect separation from Cr(H₂O)₆³⁺, a complex which absorbs less strongly than any of the organochromium derivatives.

Other Reagents. Solutions of mercuric perchlorate were prepared by boiling the oxide in a slight excess of perchloric acid. The solution was filtered then analyzed by Volhard titration with sodium thiocyanate. Solutions of methylmercuric perchlorate were prepared by reaction of methylmercuric chloride (1.89 g, 7.5 mmol) and silver perchlorate (6.75 mmol) in ethanol (150 cm³)-water (15 cm³). After stirring for 3 h, the solution was filtered to remove silver chloride and unreacted CH₃HgCl. Ethanol was removed under vacuum and the remaining solution made up to ca. 50 cm³ with water, providing ca. 0.1 M CH₃HgClO₄. A similar procedure was used for benzylmercuric perchlorate solutions. The solutions of CH₃Hg⁺ were analyzed spectrophotometrically using dithizone(diphenylsemicarbazone). The absorbance at λ 618 nm of dithizone in carbon tetrachloride is measured with and without extraction of the aqueous CH₃HgClO₄ solution.^{44,45}

Chromium(II) perchlorate solutions in dilute perchloric acid were prepared by reduction of $Cr(ClO_4)_3$ with amalgamated zinc under an oxygen-free atmosphere of Cr^{2+} -scrubbed nitrogen. Hydrated $Cr(ClO_4)_3$ was prepared from the reaction of chromium trioxide and hydrogen peroxide in aqueous perchloric acid, recrystallizing the product twice.

Lithium perchlorate was prepared from the carbonate and per-

chloric acid, and was recrystallized twice. All other materials were the best commercial grade, and were used without purification.

Experimental Methods. Uv-visible spectra as well as rate constants for reactions of >10 s mean reaction time were determined using a Cary Model 14 recording spectrophotometer. For the kinetic determinations all reagents except the organochromium complex were added to a quartz cell of suitable optical path which, if required for the complex being studied, was purged of oxygen by bubbling the solution with $\mathrm{Cr}^{2+}\text{-}\mathrm{scrubbed}$ nitrogen through a serum cap for at least 20 min. The cell was immersed to the filling neck in a constant temperature water bath and allowed to equilibrate for at least 20 min, at which time reaction was initiated by injection of a small aliquot of the thermostated CrR²⁺ stock solution. The reaction was monitored by recording a continuous tracing of absorbance at a single suitable wavelength in the region 258-420 nm vs. time.

The rates of faster reactions were determined using a Durrum stopped-flow spectrophotometer having a Kel-F mixing block and a 2-cm optical path.

A Varian A-60 spectrometer was used for proton NMR measurements. For identification of the RHg⁺ and RHgR' products, the organomercurial was extracted from the reaction solution into chloroform or carbon tetrachloride (after adding excess HCl in the case of RHg⁺), the solvent evaporated under vacuum, and the residue redissolved in 1 cm3 of an appropriate NMR solvent, usually CDCl3 or CCl₄.

Kinetic Data. The very rapid reaction of Hg²⁺ and CrCH₃²⁺ required the use of comparable concentrations of reagents, and most runs had only a two-threefold excess of Hg2+. The kinetic data for these runs were treated according to eq 8

$$\ln \{1 + \Delta_0 / [CrCH_3^{2+}]_t\} = \ln \{[Hg^{2+}]_0 / [CrCH_3^{2+}]_0\} + \Delta_0 k_2 t \quad (8)$$

where $\Delta_0 = [Hg^{2+}]_0 - [CrCH_3^{2+}]_0$, by a plot of the left side vs. t. The absorbance (D) values were used to compute $[CrCH_3^{2+}]_t$, which is given as $[CrCH_3^{2+}]_0(D_t - D_\infty)/(D_0 - D_\infty)$.

In all of the other experiments the concentration of mercuric ion or of the methyl mercuric ion was at least tenfold higher than that of the organochromium cation. In these runs a pseudo-first-order rate constant was computed either from the slope of a plot of log $(D_t - D_{\infty})$ vs. time or from a plot made according to the method of Swinbourne,46 plotting D_t vs. $D_{t+\tau}$. In the latter method, eq 9, τ is chosen as a constant time interval of ca. 0.5-1 half-life, and the pseudo-first-order rate constant, k_{obsd} , is computed as ln (slope)/ τ .

$$D_{\rm t} = D_{\infty} [1 - \exp(k\tau)] + D_{\rm t+\tau} \exp(k\tau) \tag{9}$$

References and Notes

- (1) (a) Based in part on the Ph.D. Thesis of J.P.L., Iowa State University. Oct Administration under Contract No. W-7405-eng-82.
- Cobaloxime is the trivial name given to bis(dimethylglyoximato)cobalt compounds.
- J. Halpern and J. P. Maher, J. Am. Chem. Soc., 86, 2311 (1964)
- (a) H. A. O. Hill, J. M. Pratt, S. Risdale, F. R. Williams, and R. J. P. Williams, (4) Chem. Commun., 341 (1970); (b) G. Agnes, S. Bendle, H. A. O. Hill, F. R Williams, and R. J. P. Williams, *ibid.*, 850 (1971); (c) R. E. DeSimone, M. W. Penley, L. Charbonneau, S. G. Smith, J. M. Wood, H. A. O. Hill, J. M. Pratt, S. Risdale, and R. J. P. Williams, Biochim. Biophys. Acta, 304, 851 (1973).
- A. Adin and J. H. Espenson, Chem. Commun., 653 (1971)
- (6) G. N. Schrauzer, J. H. Weber, T. M. Beckham, and R. K. Y. Ho, Tetrahedron Lett., 275 (1971).
- (a) J.-H. Kim, J. Imura, R. Ukita, and T. Kwan, Bull. Chem. Soc. Jpn., 44, (7) 300 (1971); (b) N. Imura, E. Sukegawa, S.-K. Pan, J. Nagao, J.-Y. Kim, T. Kwan, and T. Ukita, Science, 172, 1248 (1971).
- J. Abley, E. R. Dockal, and J. Halpern, J. Am. Chem. Soc., 95, 3166 (8) (1973).
- (9) F. R. Jensen, V. Madan, and D. H. Buchanan, J. Am. Chem. Soc., 93, 5283 (1971). (10) J. Lewis, R. H. Prince, and D. A. Stotter, J. Inorg. Nucl. Chem., 35, 341
- (1973). (11) M. H. Abraham and P. L. Grellier, J. Chem. Soc., Perkin Trans. 2, 1132
- (1973)(12) (a) J. M. Wood, F. S. Kennedy, and C. G. Rosen, Nature (London), 220, 173
- (1968); (b) S. Jensen and A. Jernelov, ibid., 223, 753 (1969); (c) A. Kivimae Swensson, U. Ulfvarson, and G. Westoo, J. Agric. Food Chem., 17, 1014 (1969)
- (13) V. E. Magnuson and J. H. Weber, J. Organomet. Chem., 74, 135 (1974). (a) H. L. Fritz, J. H. Espenson, D. A. Williams, and G. A. Molander, J. Am. (14)Chem. Soc., 96, 2378 (1974); (b) J. H. Espenson, W. R. Bushey, and M.
- E. Chmielewski, *Inorg. Chem.*, **14**, 1302 (1975). (15) F. A. L. Anet and E. Leblanc, *J. Am. Chem. Soc.*, **79**, 2649 (1957).

- (16) D. Dodd and M. D. Johnson, *J. Chem. Soc. A*, 34 (1968).
 (17) (a) R. G. Coombes and M. D. Johnson, *J. Chem. Soc. A*, 1805 (1966); (b) D. Dodd, M. D. Johnson, and D. Vamplew, *J. Chem. Soc. B*, 1841 (1971); (c) R. G. Coombes, M. D. Johnson, and D. Vamplew, J. Chem. Soc. A, 2297 1968).
- (18) (a) J. H. Espenson and D. A. Williams, J. Am. Chem. Soc., 96, 1008 (1974); (b) J. C. Chang and J. H. Espenson, J. Chem. Soc., Chem. Commun., 233 1974).
- (19) (a) S. N. Anderson, D. H. Ballard, J. Z. Chrzastowski, D. Dodd, and M. D. Johnson, J. Chem. Soc., Chem. Commun., 685 (1972); (b) S. N. Anderson, D. H. Ballard, and M. D. Johnson, J. Chem. Soc., Perkin Trans. 2, 331 (1972).
- (20)J. Halpern, Ann. N.Y. Acad. Sci., 239, 2 (1974).
- (21) The reaction proves to be quite complex, however, and may well involve prior oxidation to an unstable alkycobalt(IV), the latter compound then undergoing nucleophilic displacement of R by Br⁻, a process undoubtedly occurring with inversion.¹⁹
- (22) R. Dreos, G. Tauzher, N. Marsich, and G. Costa, J. Organomet. Chem., 92, 227 (1975).
- unpublished observations). D. M. Singleton and J. K. Kochi (J. Am. Chem. Soc., 89, 6547 (1967)) reported formation of a metastable tert-butylchromium ion from tert-butyl iodide and chromium(II) perchlorate in DMF solvent
- (24) The NMR data are detailed in the original thesis.¹
- (25) J. V. Halton, W. G. Schneider, and W. Slebrand, J. Chem. Phys., 39, 1330 (1963).
- (26) An authentic sample was graciously provided by Professor R. C. Larock.
- (27) M. D. Rausch and J. R. Van Wazer, *Inorg. Chem.*, 3, 761 (1964).
 (28) In this experiment (CH₃)₂Hg and (C₆H₅CH₂)₂Hg were also present in the sample, as demonstrated by their respective resonances at δ 0.27 and 2.41. These products apparently result from a scrambling of alkyl groups, although no exchange in CDCl3 was observed between authentic samples of the latter two compounds. It appears some scrambling takes place in the aqueous phase as the reaction occurs. (29) The reactions of CrCH₂l²⁺ and CrCHCl₂²⁺ with Hg²⁺ produce appreciable
- hig 2⁺¹⁶ Reactions such as those of CrCH₂Cl²⁺ and CrCH₂Br²⁺ with Hg²⁺¹, on the other hand, produce <1% Hg₂²⁺¹. A convenient test for Hg₂²⁺ production is realized by passing the product solution through a column of Dowex 50W-X8 ion exchange resin, eluting Hg^{2+} and RHg^+ with 1 F HCIO₄, and then introducing 1 F HCI. The presence of Hg_2^{2+} is indicated by a copious white precipitate at the top of the resin column.
- (30) R. S. Nohr and J. H. Espenson, J. Am. Chem. Soc., 97, 3392 (1975).
- (31) Values of σ_p used are those given by H. C. Brown and Y. Okamoto, J. Am. Chem. Soc., 80, 4979 (1958).
- (32) The correlation coefficients, *r*, are 0.989 (Hg²⁺) and 0.984 (CH₃Hg⁺), and the expected standard deviations are 0.05 (Hg²⁺), and 0.05 (CH₃Hg⁺). (For a definition of terms see J. Shorter, "Correlation Analysis in Organic Chemistry", Oxford University Press, London, 1973, pp 103–105.)
 (33) M. H. Abraham in "Comprehensive Chemical Kinetics", Vol. 12, C. H.
- Bamford and C. F. H. Tipper, Ed., Elsevier, Amsterdam, 1973.
- (34) L. H. Gale, S. Landgrebe, and F. R. Jensen, Chem. Ind. (London), 118 (1960).
- (35) N. A. Milas and D. M. Sugenor, J. Am. Chem. Soc., 68, 205 (1946).
- (36) Details of procedures, characterizations, spectra, and kinetic data are given in the thesis indicated.
- (37) The use of 50 % H₂O₂ and the method of simultaneous addition gave greatly improved vields. (38) C.
- D. Wagner, R. H. Smith, and E. D. Peter, Anal. Chem., 19, 976 (1947).
- (39) J. K. Kochi and D. D. Davis, J. Am. Chem. Soc., 86, 5264 (1964)
- (40) (a) W. Schmidt, J. H. Swinehart, and H. Taube, J. Am. Chem. Soc., 93, 1117 (1971); (b) M. Ardon, K. Woolmington, and A. Parrick, Inorg. Chem., 10, 2812 (1971
- (41) Reaction 6 is shown with the correct 1:2 stoichiometry of reactants, but the actual yield of alkylchromium complex is less than indicated in that the alkoxy radical can undergo reactions, such as reduction to the alcohol by Cr24 , competitive with the desired elimination of acetone accompanying formation of the alkyl radical. Furthermore, the latter radicals in water solution may undergo reactions other than the desired coupling with Cr2 although the latter is a facile process. The mechanisms of reactions of Cr2+ with a variety of organic peroxide functions will be described separately (M. R. Hyde and J. H. Espenson, to be submitted for publication). In the present case, the emphasis was on obtaining pure material in reasonably concentrated form, and toward this end only the center cut of the ion exchange eluate was taken
- (42) S. K. Malik, W. Schmidt, and L. O. Spreer, Inorg. Chem., 13, 2986 (1974).
- (43) G. W. Haupt, J. Res. Natl. Bur. Stand., 48, 414 (1952).
 (44) E. B. Sandell, "Colorimetric Determination of Traces of Metals", 3d ed, Interscience, New York, N.Y., 1959, pp 163–176, 621–640. (45) An aliquot of dithizone solution (typically 10 ml of 6×10^{-3} dithizone
- in CCl₄) was placed in a separatory funnel along with 3 cm³ of 1 F HClO₄ and an aliquot of the CH₃HgClO₄ solution, the latter between 30 and 70% of the amount of dithizone. The absorbance of this single extracted CCl₄ ≥ 310 and = 100 for the solution of the single extracted CCl₄ ≥ 310 and = 100 for the solution of the single extracted CCl₄ ≥ 310 and = 100 for the solution of the single extracted CCl₄ ≥ 310 and = 100 for the single extracted CCl₄ ≥ 310 for the solution of the single extracted CCl₄ ≥ 310 for the single at λ 618 is subtracted from that of "blank" solution using the same volume of water in place of the organomercurial and [CH₃Hg⁺] in the stock solution computed from the absorbance difference utilizing a molar absorptivity of 3.40 \times 10⁴ M⁻¹ cm⁻¹ (determined by a similar procedure applied to a standard silver perchlorate solution).
- (46) E. S. Swinbourne, J. Chem. Soc., 2371 (1960).